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INTRODUCTION

For use in random-access memory units, a rotating flexible-

disc file has certain advantages over the more traditional rigid-disc

file. The most obvious advantages are lighter weight and less safety

hazard. A somewhat more subtle, but extremely important, ad-

vantage is a direct consequence of the flexibility: in a rigid-disc

file, the read-write circuitry is carried in a spring-cantilever

mounted slider bearing, and radial accessing to the various tracks

is accomplished by a servo-system; a flexible-disc file can accom-

modate to a head-bar, in which the circuitry for all recording tracks

can be carried, thus

reducing the radial

access time to zero.

Run-out precludes

the use of a head-bar

with a rigid disc.

The spacing

between the discs and

the head-bar is main-

tained by a lubricating

film of air. The

dynamics of the air-

lubricated flexible disc fir),

are considerably more Figure I

complicated than those of the rigid-disc file, for the lubrication

equation is coupled to the equations of a spinning elastic plate.

The unsteady motion of elastic discs has been extensively

studied. The early work of Kirchoff 1,2 in 1850 provided deflexion

shapes and frequencies of linear transverse flexural vibrations of

non-rotating circular plates (there are many modern accounts of

this3 ). Since then many writers have contributed to the theory of

vibrations of non-rotating plates, both for asymmetrical and axis-

symmetrical modes.
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For the centrally supported, rotating circular disc, contributions

to the literature are neither numerous nor complete. The importance

of flexural wave motions in such discs was recognized as early as
4

1872 by Richards, who reported, in reference to circular sawblades:

For a time, and up to a certain point, the rigidity or
stiffness of the plate will increase; after this it begins to
diminish, until, at a very high velocity, it becomes as
limber and pliant as a piece of paper, and finally will,
on its periphery, assume a series of undulations or waves,
and is as sensitive to pressure, on the side of the plate,
as though it were of paper.

Subsequent experimental investigations by Campbell 5 in 1925 and

von Freudenreich 6 clearly established the stationary wave (a flexural

wave which travels opposite to the direction of rotation of the disc

at a speed equal to the speed of rotation, so that, to a stationary

observerit appears fixed)as a significant cause of rotating disc

failures. Still later, in 1957-8, Tobias and Arnold 7 ,8 qualitatively

studied the effect of imperfection on flexural waves and vibrations in

spinning discs, particularly in the nonlinear range.

The earliest theoryof spinning disc vibrations is due to Lamb

and Southwell, 9 who used Rayleigh' s method to obtain upper and

lower bounds for the natural frequencies of a disc, whole atits

center. In formulating their results they obtained an exact solution

for the vibrations of a spinning membrane in terms of hypergeo-

metrical series. In a subsequent paper Southwell10 discussed the

effect of a finite central clamping area in the spinning disc. For

the spinning membrane, Southwell found that the presence of central

clamping alters the shape of axisymmetric vibrations but not the

frequency. However, Simmonds 1 8 has pointed out that this con-

clusion is incorrect.

In the use of Rayleigh' s method, a radial mode shape is

assumed. Southwell10 notes that the nearness of the upper and

lower frequency bounds is very sensitive to the choice of radial
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modal shape - and that, through improper choice, these bounds may

differ by as much as 100/c. A comparison of calculated upper-bound

frequencies 9 with experimental data 8 was made by Bulkeley, 11 for

asymmetric disc vibrations having 2, 3, and 4 nodal diameters.

Agreement is good for low disc speeds in the mode having 2 nodal

diameters. Agreement is not good for increasing disc speeds and

for higher modes. The value calculated for the disc speeds at which

the gravest stationary wave (two nodal diameters) occurs differs

from the experimental value by greater than 3 per cent - and is much

worse for stationary waves having a greater number of nodal diameters.

A. Stodola 1 2 gave a Rayleigh-Ritz procedure for calculating the

frequencies of spinning turbine discs. His work is different from that

of Lamb and Southwell" ' 10 in that his analysis allows for discs of

variable thickness (radially) and assumes a different form for the

radial mode shape. No comparison of this analysis with experiments

is reported.

Asymmetrical nonlinear vibrations of non-rotating discs were

studied by Tobias 13 in 1957, with particular attention being given to a

qualitative description of the effects of disc imperfection. This work

uses the approximate technique of Lamb and Southwell 9 in an attempt
14

to extend the results of Zenneck, who discussed the effect of slight

imperfection on linear disc vibrations. Tobias developed Lagrangian

equations of motion for the disc, assuming a form for the deflected

shape. These equations are nonlinear, middle surface stretching

terms being included in the disc strain energy. Points in the disc

are assumed to move only perpendicular to its plane. This violates

boundary conditions and equilibrium in the plane of the disc, but in

approximate analyses of this type some boundary conditions can be

ignored. 15'16 To neglect equilibrium in the plane of the disc is

equivalent to constraining its motion, making it "stiffer" than it

actually is.
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With Tobias' s assumptions about displacements, it is a simple

matter to extend his results for the non-rotating disc to the case

where the disc spins. 1 1 A simple relation between the speed of disc

rotation and the amplitude of stationary waves present is obtained.

No theory of spiming disc vibrations and waves includes the

effects of transverse shear or rotatory inertia.

The stationary wave phenomenon has been found to be of great

practical importance in spinning, centrally supported, shallow shell
17

segments, as it is the cause of many shell failures (as in spinning

discs). There is, however, no theory available which predicts the

shape of statioL-ry waves in spinning shells, or at what speeds of

rotation they may occur.

In this report, we set out the equations governing the motion of

the flexible disc file. Some approximation methods are suggested,

but no solutions are carried out.

I. THE SPINNING-DISC EQUATIONS

The development presented here for the equations of disc motion
/ '19

is originally due to von Karman ; their derivation in rectangular
20

coordinates is given by Timoshenko and Woinowsky-Krieger . The

equations are nonlinear because middle-surface stretching in the disc

is taken into account. In calculating the strain components, we retain

the linear and quadratic terms in the displacement gradients. We
7- assume the disc to be perfectly

circular, uniform, homogeneous,

isotropic, and Hookean.

Figure 2 shows a typical element

N rO of a circular disc, together with

middle-surface stretching forces

per unit length N r , N0, Nr , NOr

acting on its faces. We obtain

N7 ?Ir + " +S4Ir" equations of motion for the disc by

Figure 2
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writing expressions of 1) Newton' s second law, 2) compatibility of

strain, and 3) Hooke' s law for this small element.

Points within the disc may have radial, tangential, and axial

components of displacement; we denote these by u, v, w, in the

r, 0, z directions respectively. In writing Newton' s second law

for the disc element, we neglect the in-plane components of acceler-

ation 82 u/at 2 and a 2 v/at 2 ; the typical period of in-plane motion is

short compared with that of transverse motion, so that effects of

the in-plane acceleration on the transverse motion will be averaged

out. Thus, the in-plane motion, which is regarded as forced by the

transverse motion, is assumed quasi-statis, i.e., at any given

time it is governed by the equations of static equilibrium.

For equilibrium of moments about an axis perpendicular to the

plate element of Figure 2, we need

Nro N Or (1.1)

Equilibrium in the radial direction requires that

r8Nr/ r + Nro/ 80+N r - N +rR =, (.2)

where R denotes the radial body force per unit area of disc; it may

be interpreted as a centrifugal force when the spinning disc is treated

from the D' Alembert point of view.

For equilibrium in the tangential direction,
ON/aO+ rONre rOr+2 00 /8 r+2N 0. (1.3)

Equations (1. 2) and (1.3) govern the plane stress in the disc.

However, superimposed on this is the stress field induced by disc

flexure.

If stretching forces in the plane of the disc could be ignored, the

static transverse deflexion w would satisfy the forced biharmonic

equation**
4 w = (p - pa)/D, (1.4)

* See reference 21, page 56
**See reference 22, page 39-24



where p is the loading pressure, Pa is the ambient pressure,

V 2 
= 82/ar 2 + (l/r) 8/8r + (l/r z) 82 /8e 2 , (1.5)

and D is the flexural rigidity, defined by

D = 2Ed3 /3 (1-v 2 ) , (1.6)

with E as Young' s modulus and v Poisson' s ratio for the material

of the disc.

The angular position of any point in the disc with respect to a

fixed observer is

c=o +Qt, (1.7)

where 0 is the angular velocity of the disc.

The derivation of equation (1. 4) assumes that lines normal to

the middle surface of the undeflected disc will remain normal to the

middle surface at all times; this is equivalent to neglecting transverse

shearing deformation. It also assumes that the disc curvature at any

point is small compared with the disc thickness and that the slope of

the deflected surface is small compared with unity, i.e., that strains

are small compared with unity. These assumptions do not in them-

selves restrict the magnitude of the disc deflexion, for large-scale

rigid-body motions of each disc element may take place even though

the strains are small, especially if the disc is very thin.

When stretching forces in the middle surface of the disc must be

accounted for, equation (1.4) does not apply. Moreover, the

derivation of (1.4) assumes static deflexion. Under certain
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conditions, time-dependent motion can be assumed quasi-static, so

that (1.4) provides an approximation. In general, however, the

transverse inertia of the disc cannot be ignored. When stretching

forces and transverse inertia are included in the analysis, we obtain

instead*

82 w + 1 (N 82 W + aNe0 aw
DV 4 w =-2pd +-t z ae-

ON N
a2w + r Ow r Ow

r FrT +-5 _r'7 +F 7- 'F

2N 8N aN
+ r 02W + Ire + re w + P p - (1.8)

This result can be simplified. By using the in-plaae equilibrium

equations (1. 2) and (1. 3), we obtain

DV~W 2w a (I. (~ ag

+N azw 1 N w + P "Pa
r Fr + + • (1.9)

*The derivation, using rectangular coordinates, is given in
Reference 20, page 378.
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If the transverse load p is regarded as known, equations (1. 2),

(1. 3), and (1. 9) provide three equations among the quantities Nr , No ,

NrE, w . A fourth relation, compatibility of stress, is obtained by

combining the strain-displacement relations with Hooke' s law.

If second order displacement terms are retained, it has been

shown 1 3 that the strains in the disc are given by

au + 1 (wr (1.10)

u 1 av 1 OwfE= r +--i 2n-z a ' (1. 10)

av v 1 au 1 aw Cw
,yrE = r r r aE) r Fi 5r 0 (.

Hooke' s law, written in terms of the stretching forces, is

E r = (Nr-vNo)/ 2Ed ,(1.13)

0 o= (N 0-VN r)/ 2Ed ,(1.14)

Nro= Nro/ 2Gd , (1.15)

where G is the shear modulus, defined by

G = E/2(1+v) . (1.16)

From equations (1.10), (. 11), (1. 12), we obtain an equation of

compatibility of strain:



r2 r a~ 2 r\ "'r .82 (aw 8w~

g re ) -( - rTOM ME8+r.-r- O-W M" -

r 8 lw 2 1 82 law r ' law (1.17)

With the strains given by equations (1.13), (1.14), (1.15), we obtain

the equation of compatibility of stress:

az ONE 32 N r /82(. r + ) 8 r-

8 \ N a N
8 r 2 (rN +r-gr Ur 0 =8Ed 2 (aw w)

r8 8w2 1 82aw: r alra / JwV .
2+ 77' T J- T r 2 1r (1.18)

Equations (1. 2), (1. 3), (1. 9) and (1. 18) provide a complete formu-

lation of the relationship between stretching forces and transverse

deflexion in a spinning disc. The body force appearing in (1.9) is

the centrifugal D' Alembert force, i.e.,

R = 2pd 122 r . (1.19)

The loading pressure p is taken as the lubrication pressure arising

from the passage of the disc close to the head bar. Thus, p vanishes

except near the bar, for ambient pressure obtains on both sides of the

disc.

In setting out the lubrication equation, we assume that the only

significant in-plane component of disc velocity is the rigid-body

motion O2r in the increasing 0 direction. Specializing the general
23result obtained by Langlois , we then find that, for an isothermal

gas,

aT (r h3= 6 t0r (hp) +12 l a (ph) ,(1.20)
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where h denotes the spacing between disc and head bar, and pt is

the gas viscosity. On the periphery of the lubricating film, the

pressure is ambient. The use of 0 as the angular variable in the

elastic equations and ( in the lubrication equation presents no real

difficulty. With equation (1.7),

Consequently, all O-derivatives could be replaced by 6 -derivatives

in the elastic equations (not in the lubrication equation, for additional

velocity terms would be needed to achieve the transformation from a

fixed to a moving coordinate system). Thus, we consider, in essence,

a non-rotating disc subjected to two ficticious force fields: 1) a body

force field given by (1. 19); 2) a transverse loading, determined by

(1.20) subject to the boundary condition of ambient pressure on the

bearing periphery.

II. BOUNDARY CONDITIONS AT THE DISC PERIPHERY

Boundary conditions for the elastic disc are of two types: those

associated with disc flexure; those associated with extension of the

middle - surface. Flexure boundary conditions can determine values

of deflexion, slope, bending moment, twisting moment, and transverse

reaction force at a disc edge; two such conditions may be specified

along any segment of the disc periphery. Boundary conditions

associated with middle-surface extension can determine values of the

stretching forces and in-plane displacements at disc boundaries. We

can, in general, specify values of the radial and tangential stretching

forces, or we may specify the value of the radial displacement.

The selection of appropriate boundary conditions depends upon

the particular problem to be solved. Of particular interest is a

disc which is completely free at its outer edge, r = a, and is

built-in at an inner radius, r = b. For such a disc, the boundary

conditions are*:

* See reference 20, page 284
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1) At the outer edge:

a) vanishing bending moment

D a 2w v r+ + w 0 (.1)
Lr2 rP (r Or N

b) vanishing transverse reaction force

[o 33wa)]:
D -w) -£( R " (.

c) vanishing stretching force

[Nr~~ 0 ;(2.3)

2) At the inner edge:

d) vanishing deflexion

WIr=b =0 (2.4)

e) vanishing slope

[8w/ar =b = 0; (2.5)

f) vanishing radial displacement

[ulr=b = 0 . (2.6)

A distinction must be made between discs which are "built-in"

and discs which are "clamped" at r = b. By "built-in", we mean

that the disc forms an-integral part of the shaft or hub to which it

is attached. By "clamped" we mean that the disc is a separate piece

which is centrally supported over a "clamping circle" by collars or

similar constraints to transverse motion. A turbine wheel, typically,

is built-in, whereas a sawblade or computer memory disc, typically,

is clamped.
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For clamped discs, the boundary conditions at r = b differ from

those listed above. The slope and deflexion still must vanish, but

the clamping constraints do not force the radial displacement to vanish.

We therefore acquire another boundary value problem: the elastic

deflexion, due to the centrifugal loading, of the portion of the disc

within the clamping circle. This is coupled to the boundary value

problem we already have by requiring the radial displacement and the

radial stretching force to be continuous at the clamping circle.

For a tightly clamped disc, Coulomb friction between the disc

and the clamping collars tends to minimize the distinction between a

clamped disc and a built-in disc. Bulkeley 2 4 has recently investigated,

in some detail, the effects of clamping on free vibrations of a

spinning disc.

MI. APPROXIMATION METHODS

Considerable simplification of the disc equations can be achieved

by adopting some or all of the following assumptions.

a. Flexural rigidity may be neglected; if the disc behaves as a

membrane, D = 0. The DV 4 w drops out of equation (1.9), so that

we lose some ability to satisfy boundary conditions. We must, in

essence, drop one boundary condition at each edge. For the inner

edge, the choice is easy: since it is pointless to speak of a built-in

membrane, the slope condition does not apply. For the free outer

end, setting D = 0 loses both condition (2. 1) and (2. 2), so that a

boundary condition must be recovered. By definition, an element of

membrane can support only forces which act in its plane. Conse-

quently, we obtain a slope condition at the free edge: the membrane

must be parallel to the net force field. In applying this boundary

condition we must take into account all forces: body forces, surface

forces, D' Alembert forces.

b. If the disc slopes are small, the strains are linear functions

of the displacements. The w-dependence drops out of equations (1. 10),
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(1.11), and (1.12), so that

C = u/r,

r e =u + av/8,

ryro= rcv/ 8r - v + 8u/80 (3.1)

c. If the deflexion of the disc is axially symmetric, all a/80
terms disappear from the various equations. If, in addition, the disc

is not submitted to in-plane shear, axisymmetric or otherwise, we

may assume NrG = 0 . In this case, some care must be used in

applying compatibility relations, for equation (1. 18) will underdetermine

the problem: there won' t be enough boundary conditions available for

a compatibility equation involving second derivatives. Instead, we

note that, with a80e terms set equal to zero, u can be eliminated from

equations (1. 10) and (1. 11) by a single differentiation:

E -- L (roe) =l()2 (3.2)

With (1. 13) and (1. 14) we then obtain the equation of compatibility

of stress

a (rNe)2- Ne+ Ed(aW\(3N r - y r -- (rN o+1 2 r) Ed- (3.3)

d. If the lubricating air can be assumed incompressible,

equation (1.20) becomes linear in the pressure (one of those p' s in

each term is really the lubricant density, proportional to the pressure

in an isothermal gas; in an incompressible fluid, the density is

constant and cancels out). Thus

' rh3 ') + a- h3 a- 6 412r 8h+ 12tr- .L (3.4)

e. If the bearing is but lightly loaded, we may assume

h=h 0+w,
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where h is a specified function of r and 0), and neglect terms of

the second degree or higher in w/h . This approach was applied by

Langlois 2 5 to the problem of an inelastic tape passing near a circular

cylinder.

IV. STRESS-FUNCTION FORMULATION

The set of equations (1.2), (1.3), (1.9), (1.18) can be expressed

more concisely if the stretching forces are eliminated by introducing

a stress-function-. In terms of a stress-function D , the stretching

forces are given by
1 8c1 1 8z@

Nr r + rz + A

NE -ar T + A

N - a l a(D(4.1)

where A is a body force potential defined such that

R = -8A/ar . (4.2)

For the spinning disc,

A = - pdS 2r 2 . (4.3)

Substituting (4. 1) into the compatibility equation (1. 9) yields

4 2 w +w 8A
DVw =-pd .- +L(wW)+AVrw + p p- Pa , (4.4)

* See Reference 20, p. 418 or Reference 22, p.45-11. Two misprints
occur in the latter reference. The second of equations (45. 21b)
should read

-2VV Z = EtL (w,w)- EtL (wo ,w)
10 0

and the expression for L (w, 0) should have the term - -
1 82 w r

replaced by I "2 "
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where the operator L (w,V) is defined by

azw /12 +~1 a211 + 82.D1a +L (w , ) - =r (- r -a +r -z 5 0 7)] + T -r r _r + -- M

17- aO ar 30CO (4.5s)

Substituting (4.1) into (1. 18) and using (1.2), (1.3), we obtain

-V 4,D- EdL(w,w) + (1-v)VZA + (v/r) V2 A/30 2 . (4.6)

The equilibrium equations (1. 2) and (1. 3) are automatically

satisfied by (4.1), provided only that A is not a function of E.
Since for a spinning disc A depends only on r, we omit the last

term in (4. 6):

-V 4 4= EdL(w,w) + (1-v) V2 A (4.7)

Equations (4. 4) and (4. 7) form a system equivalent to (1. 2), (1. 3),

(1.9), (1. 18). When appropriate boundary conditions are employed,

their solution yields two functions, w and 4. The stretching forces

are subsequently obtained from (4. 1).

Equations (4. 4) and (4. 7) govern the motion of a spinning membrane

if we set D = 0 in (4. 4) and modify the boundary conditions appropri-

ately.
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